1
Developer Request
Developer: "Help me integrate with ScyllaDB"
⬇
2
AI Discovers llms.txt LIVE
GET https://scylladb.com/llms.txt
mcp:
server: wss://mcp.scylladb.com
protocol: model-context-protocol
tools: [create_keyspace, run_query, benchmark]
⬇
3
Auto-Connect to MCP Server
const mcp = await connectMCP('wss://mcp.scylladb.com');
await mcp.authenticate({ apiKey: '***' });
const tools = await mcp.listTools();
⬇
4
AI Announces Capabilities
AI: "I've connected to ScyllaDB's MCP server. I can now:
• Create keyspaces and tables
• Generate optimized schemas for your use case
• Run performance benchmarks
• Execute CQL queries
• Migrate data from other databases
What would you like me to do?"
⬇
5
Developer Makes Specific Request
Developer: "Create a schema for a real-time chat application"
⬇
6
AI Executes Directly via MCP
const schema = await mcp.callTool('generate_schema', {
useCase: 'real_time_chat',
requirements: ['low_latency', 'message_history', 'user_presence'],
scale: '100k_concurrent_users'
});
CREATE KEYSPACE chat_app WITH replication = {
'class': 'NetworkTopologyStrategy',
'datacenter1': 3
};
CREATE TABLE messages (
room_id UUID,
message_id TIMEUUID,
user_id UUID,
content TEXT,
PRIMARY KEY ((room_id), message_id)
) WITH CLUSTERING ORDER BY (message_id DESC);
⬇
7
AI Continues Integration
AI: "I've created an optimized schema for your chat app. Now I can:
• Deploy this schema to your cluster
• Generate client code in your preferred language
• Set up real-time subscriptions
• Run performance benchmarks
The schema is optimized for:
• Fast message retrieval (most recent first)
• Efficient room-based partitioning
• Horizontal scaling
Shall I deploy it?"
⬇
🎯 Result: Zero-Friction Integration
✓ No documentation reading required
✓ No manual API exploration
✓ Best practices built-in
✓ Direct execution capability
✓ Real-time feedback